Navegación |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CONCEPTO DE FUNCIÓN
Dados dos conjuntos D e I, se dice que f es una función definida en el conjunto D y tomando valores en el conjunto I cuando a cada elemento de D se le asigna uno y sólo un elemento de I.
El conjunto D recibe indistintamente los nombres de conjunto origen, conjunto inicial, dominio de la función, o campo de existencia de la función, y se representa por Dom(f ).
Un elemento cualquiera del conjunto D se representa por la letra x, y es la variable independiente.
Cada elemento x de D tiene por imagen, mediante la función f, un elemento de I que se representa por y y es la variable dependiente. Esto se expresa escribiendo y = f(x).
El conjunto I es el conjunto final y los elementos que son imagen de algún elemento de D forman el conjunto imagen (Im(f )) o recorrido de la función (f(D)).
|
|
|
|
|
|
|
|
Hoy habia 4 visitantes (7 clics a subpáginas) ¡Aqui en esta página! |
|
|
|
|
|
|
|